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.Absinuz Fmoc a-mcthoxy&cinc can be koqomud into solid phape peptide syntkis (SPIT) me%badology to give a- 
hydroxyglycioe extended pcpfides on M dqrotcctjoa and ckavagc from the solid snppcit with niflm * acid mntainittg 5% 

RQ- 

Many peptide hormones requk a primary amide function at the C-terknus for full biological activi~l. 

The biosynthesis of peptide amides involves a post translational two stepz enymc m&iated oxidative cleavage 

of a glycine extended peptide 1 via an a-hydroxyglycine interm&a& 2 (Scheme 1>3. 

The first step is catalysed by peptidyl a-hydroxyglycine monooxygenase (PHM, EC 1.4.17.3). which 

selectively removes the pro-S hydrogen from the C-km&al glycine residue and adds a hydroxy group with 

retention of configuration, to give the S-a-hydroxyglycine residue 2’. The second enzyme, peptidyl 

amidoglycolate lyase (PAL, EC 4.3.2.5), then catalyses the decomposition of 2 to the pepti& amide 3 and 

glyoxylic acid. This biosynthetic pathway suggests that sequences containing C-terminal a-hydroxyglycine 

could be useful for the design of inhibitors of C-terminally amidated hormones. 

0 

1 2 

Scheme 1 

3 

Whilst the synthesis of a-hydroxyglycine extended pepddes has previously been qorted both by 

condensation of peptide amides with glyoxylic acidmb and by the reaction of glycine extended peptides with 

rccornbinant a-amidating enzymes, we sought to find a general synthetic route to these compounds using solid 

phase peptide synthesis in order to investigate whether these a-hydroxyglycine extended peptides have a 

biologicaI function. We now report the first solid phase synthesis of a-hytixyglycine extended pcptides. 
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Scheme 2. i, glyoxylic acid; ii, MeOH, sulphmic acid; iii, LiOH 

Fmoc carbamate6 4 (Scheme 2) was treated with glyoxyk acid (5 equiv.) in gently refluxing ethyl 

acetate for 6 hours to give racer& 9-fluorenylmethoxycarbonyl-a-hydtoxyglycine 5 in 73% yield. The 

secondary alcohol was protected as the methyl ether 6 by O-methylation of the a-hydroxyglycine derivative’ 5 

followed by ester hydrolysis using LiOH in aqueous acetone to give 6 in 68% overall yield. Activation of 6 

@IC/HOBT/DMAP) was used to functionalise Wang resin* which was employed for the solid phase synthesis 

of the gastrin derivative 7 on au Applied Biosystems 43OA peptide synthesiser. 

H.Trp.MetAsp.Phe.a-OH Gly.OH 

7 

H.Glu.Glu.AlaTyr.Gly.Trp.Met.Asp.Phe.a-OH Gly.OH 

8 

Fmoc deprotection monitoring9 during synthesis showed low incorporation of Phc due to the instability of 

the O-methylated a-hydroxyglycine residue to. Coupling of Asp to Phe also showed a low incorporation which 

is characteristic of diketopiperazine (DRP) formation I*. This resulted in the isolation of only small amounts of 
the diastereomeric peptide 7 after cleavage (TPA/H2O/EDT) and RP-HPLC. The diastereomers of 7, due to the 

R and S configuration of the terminal a-hydroxyglycine system, were separable by HPLC and were shown to 

be identical by FAB mass spectrometry and amino acid analysis. Transformation of the a-OMe substituent to 

the a-OH during acid treatment probably proceeds via the corresponding imine intermediate. 

Synthesis of the decapeptide gastrin analogue 8 was then carried out using 2-chlorotrityl chloride resin~r 

in order to prevent DKP formation. Fmoc deprotection monitoring during synthesis of 8 showed no evidence of 

DKP formation and the target peptide was isolated in 3.8% overall yield (13mg) after cleavage and HPLC 

purification. 
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Figure 1. WLC of crude (I) and pure (2) peptide 8 
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Figure 2.6OOMhz lH NMR of peptide 8 

The diaswcomeric decapeptides 8 were inseparable by RP-HPLC @igure I) but 1W NMR (6OOMhz@ 

DMSO) showed a I:1 ratio of diaswmomers with the nsonanccs at 4.79 ppm and 4.75 ppm @guns 2 MCI 3) 
assigned to the aH of an a-hydmxyglycine residue. DQF-COSY (Double Quantum Filtered Chemical Shift 

Correlation Spectroscopy) allowed a complete assignment to be made of the %i NMR (Figure 2) and showed 

that the ozH signals of the diastereoisomeric a-hydmxyglycine did not have any other crosspeaks except with 

the NH signal at 8.66 ppm and the wonance of these aH’s showed a downfield shift with respect to the othcs 

aHk 
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Figure 3. Expansion of Figure 2 to show a-hydroxyglycine aH signals 

In conclusion.we have shown that it is possible to introduce a-methoxyglycine as the C-terminal residue 

in the~assembly phase of Fmoc solid phase pepride synthesis. Subsequent acid treatment not only causes side 

chain dcprotection and cleavage of the peptide from the resin but also converts the C-terminal residue to a- 

hydroxyglycine. The biological function of the a-hydroxyglycine peptides with respect to C-terminal 

smidation is currently under investigation by Professor G.J. Dockray (Physiological Laboratory, University of 

Liverpool). 
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